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Abstract

This paper provides new evidence on the plant-level relationship between automation, labor and
capital usage, and productivity. The evidence, based on the U.S. Census Bureau's Survey of
Manufacturing Technology, indicates that more automated establishments have lower production
labor share and higher capital share, and a smaller fraction of workers in production who receive
higher wages. These establishments also have higher labor productivity and experience larger
long-term labor share declines. The relationship between automation and relative factor usage is
modelled using a CES production function with endogenous technology choice. This deviation
from the standard Cobb-Douglas assumption is necessary if the within-industry differences in the
capital-labor ratio are determined by relative input price differences. The CES-based total factor
productivity estimates are significantly different from the ones derived under Cobb-Douglas
production and positively related to automation. The results, taken together with earlier findings
of the productivity literature, suggest that the adoption of automation may be one mechanism
associated with the rise of superstar firms.
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1 Introduction

The diffusion of automation is believed to be one of the fundamental drivers of both the decline
in employment, and the increase in output and productivity in U.S. manufacturing over the past
decades, during which labor’s share of output has also diminished. As robots and machines
increasingly take over the tasks performed by humans, the reliance on labor can recede further.
These aggregate trends notwithstanding, micro evidence on the connection between automation,
labor share, and productivity, have been scarce, mainly due to a lack of detailed measures on the
use and extent of automation at the plant level.

This paper provides new evidence on the nexus of automation, total factor productivity (TFP),
and labor share using plant-level measures of automation from the U.S. Census Bureau’s 1991 Sur-
vey of Manufacturing Technology (SMT). The SMT was designed to collect data on the adoption
and use of automation-related advanced technologies, making it ideal for the type of analysis car-
ried out here. The stylized facts, discussed in more detail in Section 2, point to a relationship
between automation and relative factor usage that is consistent with theories emphasizing the

L Specifically, overall

potentially adverse effects of automation on labor engaged in production.
labor share in the value of shipments is decreasing in the degree of automation mainly because the
relationship between production labor share and automation is negative. In addition, more auto-
mated plants tend to have a lower fraction of their workers engaged in production and pay higher
wages to production workers. Furthermore, plants with higher recent investment in automation
experience larger declines in production labor share on a five-to-ten-year horizon. These patterns
indicate a negative association between automation and the production labor share, both across
plants and over time.

The stylized facts suggest that the differences in the capital-to-production-labor ratio and the
ratio of expenditure shares for these two factors are non-trivial. More importantly, the variation
in these measures is systematically related to the degree of automation, which points to a model
of production that allows for within-industry variation in both the capital-labor ratio and relative
factor shares.? Motivated by these observations, a general constant elasticity of substitution (CES)
model of production is considered, in which the production unit adjusts the relative weights of
capital and production labor in the input index as input prices vary. The variation in relative
input price across plants is the main determinant that explains the differences in capital-labor
ratio and the relative revenue shares of the two inputs. The sensitivity of relative usage of capital

versus production labor to their prices is characterized by the elasticity of substitution between

1See, for instance, Acemoglu and Restrepo (2018a,c).

2The implications of assuming a Cobb-Douglas technology and competitive input markets are not consistent
with these stylized facts. In particular, these assumptions imply that there is no relative input price variation
across plants in the same industry, and consequently, the capital-labor ratio should be constant.



these two factors. Since this elasticity is a key technology parameter, the first step in the analysis
is to estimate it.*> Given an estimate of the elasticity, the remaining parameters of the production
function are determined following a methodology similar to the one in Haltiwanger and Wolf
(2018). The approach uses first-order conditions of the plant’s optimization problem in order to
determine the elasticity of variable factors. The elasticities of quasi-fixed factors are estimated
controlling for unobserved TFP differences using plant-level variation in advanced technologies
investment available from the 1991 SMT.

The elasticity of substitution estimates imply that the labor share declines as the price of
production labor increases relative to the capital rental rate. Conditional on this estimate, the
CES production function estimates yield a TFP distribution that is significantly different from
the one implied by the standard Cobb-Douglas (CD) assumption with constant returns-to-scale,
and other variants of the Cobb-Douglas and CES-based approaches. The findings also indicate
that larger and more productive plants tend to rely more heavily on automation, and have lower
production labor share. In other words, low production labor share is mainly a characteristic of
larger, highly automated, and more productive plants.

This study is related to previous research on the role of relative factor-price differences that
beget substitution away from production labor. Some of the prior studies use industry-level
data and indirect inference to learn about the degree of diffusion of automation and its effects.?
The empirical analysis in these studies relies on data on the relative price of equipment and the
amount of certain types of capital, measured for broad industry aggregates.” In contrast, this
paper uses direct micro-level measures of automation from the 1991 SMT. The objective of the
SMT was to collect data from industries where the use of advanced technologies and automation
is relatively more prevalent implying that the capital stock in these industries is more likely to
be automation-related. This feature of the survey makes it ideal for studying patterns of capital-

6

labor substitution.® The plant-level measures of automation used in this analysis cover four

3The parameter is identified using plant-level variation in labor usage, both in cross-section and over time. A
similar methodology can be found in Raval (2017).

4See, e.g., Elsby et al. (2013), Karabarbounis and Newman (2014), and Graetz and Michaels (2015).

°For instance, Elsby et al. (2013) and Karabarbounis and Newman (2014) exploit the fall in the broad industry-
level relative prices of capital to explain the decline in labor share. Acemoglu and Restrepo (2017) use data on the
diffusion of robots available only by broad industry classifications to analyze local employment effects of automation.

6The majority of prior work in this literature utilizes general measures of capital stock, which arguably contain
information on stocks of capital related to advanced technology. Previous research has also used measures of
information technology investment and utilization reliance to study productivity (e.g., Brynjolfsson and Hitt;
Brynjolsson and Hitt (2003), and Brynjolfsson and Yang (1996)). In its broader definition, automation is not limited
to utilization of computers and IT, but also includes many types of robots and machines in which pre-programmed
computer software dictates the movement of factory tools and machniery (CNC machines), metal-working lasers,
optical inspection devices, automatic-guided vehicles, and many other technologies. Similar statements hold about
labor. It is unlikely that all labor is substitutable with automation. Many types of labor, especially ranks of
non-production labor such as managers, marketing and IT personnel may not face the same risk of displacement
by automation as production labor. The findings in this paper are consistent with this view.



broad technology groups, and seventeen individual technologies classified under these groups. The
indicators encompass both the extent to which a plant’s operations depend on automation, and
the amount of investment in automation.

The paper also explores the implications of automation for productivity measurement. A
fundamental question is whether more productive plants are also the ones with lower labor share
and higher degree of automation. If productivity is Hicks-neutral and the contribution of all
inputs is correctly accounted for, automation and the measured productivity residual should be
uncorrelated. However, a systematic relationship may be present if automation is correlated with
unobserved factors that relevant for output variation. For instance, the use of advanced technology
and automation may enhance managerial productivity, inventory management, or coordination on
the factory floor — factors that are not captured by standard measures of input usage only. In such
cases, a positive relationship between productivity and automation, and a negative one between
labor share and automation, may emerge.” The empirical results suggest that these relationships
indeed hold for the plants in the 1991 SMT.

The findings in this paper contribute to research on the decline in U.S. labor share.® One
explanation for the decline is the diffusion of labor-saving technologies and automation brought
about by the decline in the relative price of capital with respect to labor. This mechanism may
be as relevant for manufacturing as it is for the retail, wholesale, and financial sectors, where
self-service checkouts, advanced storage systems, automated customer service and other forms of
automation have been diffusing.® Other explanations include various other factors, such as import
intensity and offshoring, the decline in unionization, or labor reallocation.'® Although the last
one of these has received a lot of attention with the rise of productive and large firms (“superstar
firms”) and the associated increase in industry concentration of employment and sales, the exact
mechanisms through which superstar firms emerge, and the role of technology adoption therein,
have not been explored in detail. In particular, it is not known to what degree automation and
technology use matters for labor share, in addition to the effects of productivity on labor share.
This paper provides additional evidence on how productivity and the labor share vary with the
intensity of automation across plants.

The analysis in this paper is part of the literature that use the SMT to analyze the connection

between technology and plant-level outcomes. Most of the existing work is based on extensive

"See Syverson (2011) for a more comprehensive list of factors that, if not properly controlled for, may be
systematically related to measured productivity.

8For recent examples, see Elsby et al. (2013), Karabarbounis and Newman (2014), Lawrence (2015), Barkai
(2016), Autor et al. (2017a,b).

9See, for instance, Basker et al. (2017), for an analysis of customer-labor substitution in the context of gasoline
stations.

10 Autor et al. (2013) highlight the role international trade may have on local labor markets. Elsby et al. (2013)
argue that the decline of unionization may be considered as factor that depresses wages and reduce employment.
Autor et al. (2017a,b) analyze the causes and consequences of labor reallocation.



measures of technology presence.!' A number of papers look at the relationship between technology
presence and plant life-cycle.!? Others explore the wage premia associated with technology use.'?
The SMT has also been used to study the connection between labor productivity and technology.'*
The analysis differs from previous work in its focus, as the main objective is to estimate plant-level
TFP in a way that accounts for the possible connection between input price variation and factor
usage and at the same time controls for unobserved productivity differences. For this purpose,
intensive measures of investment in automation in the 1991 SMT are more appropriate because
they arguably better capture unobserved productivity differences than extensive measures used in
earlier studies.

The rest of the paper is organized as follows. Section 2 describes the data. Section 3 documents
some stylized facts on the connection between automation and plant characteristics. Section 4 lays
out a model of CES production for a manufacturing plant with endogenous technology choice.
Based on the model, Section 5 introduces different approaches for estimating TFP. Results and
their implications are discussed in Section 6, along with a comparison with standard approaches.
This section also explores the connection between the estimated TFP, automation, and production

labor share across plants. Section 7 concludes.

2 Data

This section describes the datasets used in the empirical analysis. The main data source on
advanced technology and automation is the U.S. Census Bureau’s 1991 SMT, part of a collection

of surveys on technology use in manufacturing plants conducted in 1988, 1991, and 1993.1® The

"Beede and Young (1996) provide an extensive summary of this literature.

2Dunne (1994) finds that age and technology use are essentially uncorrelated at the plant level, while Doms
et al. (1995) document that capital-intensive plants with advanced technology have higher growth rates and are
less likely to fail.

13Dunne and Schmitz Jr. (1995) find that establishments with more advanced technologies pay the highest wages
and employ a higher fraction of non-production workers. Doms et al. (1997) also examine the connection between
wages, skills, and technology using data that connects individual workers to plants. They document that businesses
that use a higher number of advanced technologies have more educated workers, employ relatively more managers
and pay higher wages. They do not find, however, a significant correlation between skill upgrading and use of
advanced technologies at the plant level.

4McGuckin et al. (1998) find that establishments that use the most advanced technologies exhibit higher labor
productivity than the rest, and that the use of advanced technologies is in general positively related to improved
labor productivity performance.

15The SMT was conducted for 1988, 1991, and 1993, with extensive measures of technology adoption available in
the 1988 and 1993 versions. Some of the plants surveyed in 1988 were dropped and new establishments were added
for the 1991 and 1993 SMT. Therefore, the three surveys do not necessarily include the same plants. Despite the
differences, some of the previous findings — particularly the relationship between worker wages, labor productivity
and technology use — also emerge in the 1991 SMT. This indicates there is some general consistency between the
answers in the 1988 and 1993 SMT and the answers to the different questions asked in the 1991 SMT.

1During the developmental phase of the survey, the Census Bureau relied on consultations with a broad cross-
section of Government, private industry and academic experts. The SMT was partly funded by defense agencies.



survey contains a stratified random sample of about 10,000 observations, representative of nearly
45,000 plants in 1991.

While the SMT pertains to an earlier period, it has several desired features for the type
of analysis carried here. First, it contains an exceptionally rich set of measures on the use of
automation-related technologies, many of which had already diffused to a large extent even by the
time of the survey. In addition, the survey was designed to specifically measure technologies that
can substitute for labor, making it ideal for exploring the patterns of capital-labor substitution. It
also contains data on a large set of other plant characteristics not available in typical surveys, and
can be linked to other Census Bureau surveys to obtain additional plant-level variables. Moreover,
the presence of data for the surveyed plants for a long period of time following the survey allows

for an analysis of the post-survey evolution of plants with varying degrees of automation.

2.1 Industries

The 1991 SMT has data on 5 major 2-digit SIC manufacturing industries: Fabricated Metal
Products (SIC 34), Industrial Machinery and Equipment (SIC 35), Electronic and Other Electric
Equipment (SIC 36), Transportation Equipment (SIC 37), and Instruments and Related Products
(SIC 38). These industries were chosen based on the relatively higher likelihood of reliance on
the technologies that are the subject of the survey. They together accounted for about 43% of
manufacturing employment around the time of the survey.

The industries in SMT are generally capital intensive, see Table 1. Nevertheless, compar-
ing the production labor share, capital share, capital share-to-labor share ratio, and TFP in SMT
industries with the rest of manufacturing industries suggests that they are not special cases in man-
ufacturing. One reason these industries were chosen for the survey may have been the relatively
high presence of defense contractors in these industries, which also tend to be more advanced in
terms of technology. A number of empirical studies in engineering economics support the view that
manufacturing units producing military-use output tend to utilize more advanced technologies.!”
This finding echoes in the SMT: plants that indicate production to military specs have on average

higher technology use and investment.!®

Overall, the relatively high prevalence of advanced tech-
nologies makes the SMT ideal for exploring the substitution patterns between production labor
and capital.

As background information about these industries, Figures 1(a)-1(b) show aggregate labor

share measures in the five SMT industries over the period 1958-2007.1 Both overall and production

17See, e.g., Kelley and Watkins (1995,1998,2001).

18Question 7 in the 1991 SMT asks plants whether any of the products produced at the plant are manufactured
to military specifications.

9The industry level data for the SMT industries is obtained from the NBER-CES Manufacturing Industry
Database, available at http://www.nber.org/nberces/.



labor share decline in all industries during this period, and the decline dates back at least to the
1970s. Perhaps more surprisingly, capital share also decline in all industries until the mid 1990s,
but flatten thereafter — see Figure 1(c).?’ By and large, the trends in labor and capital shares are
quite similar across the five industries covered by the SMT over a long horizon. In the year of the
survey (1991), the highest production labor share is observed for Fabricated Metal Products (SIC
34) and the lowest for Instruments and Related Products (SIC 38). The highest capital share
is in Fabricated Metal Products (SIC 34), and Industrial Machinery and Equipment (SIC 35),
and lowest in Transportation Equipment (SIC 37). The ratio of capital share to production labor
share, shows slightly different picture, see Figure 2(a). This indicator is the highest in Electronic
and Other Electric Equipment (SIC 36), and starts to increase in this industry and in Instruments
and Related Products (SIC 38) in the early 1980s, and somewhat later in the remaining industries.
Turning to the 5-factor TFP measure, see Figure 2(b), Industrial Machinery and Equipment (SIC
35) and Electronic and Other Electric Equipment (SIC 36) show large increases starting in the
early 1990s, whereas other industries experience more modest changes over the entire period.
Overall, these findings suggest that industries in the SMT have largely similar trends in labor
and capital shares, but somewhat less so in TFP. Electronic and Other Electric Equipment (SIC
36) stands out as one industry where the trends in capital share, capital share-to-production labor

share ratio, and 5-factor TFP are more pronounced post-1990.

2.2 Technologies

The 1991 SMT provides plant-level intensive measures of technology adoption, use, and invest-
ment for four broad technology types, which include 17 individual technologies, listed in Table
2. Some of the technologies (e.g. Robots, Automated Storage and Retrieval Systems, Auto-
mated Guided Vehicle Systems, and Automated Sensor Based Inspection/Testing Equipment) are
directly aimed at automating tasks performed by labor, whereas others (e.g. Computer Aided
Design/Engineering, Computer Aided Manufacturing, Local Area Networks) can either facilitate
or support automation of tasks. The analysis treats the technologies as parts of automation in a
plant. All technologies have the potential to replace workers engaged in production. 2!

The same technologies are the subject of the survey questions in all three waves of the SMT —
1988, 1991, 1993. The 1991 SMT is the key input for this paper because of its specific questions
on intensive measures, such as the amount of past and planned future investment in advanced

technologies. However, the 1991 SMT does not provide information on which of the specific 17

technologies were present at the time of the survey. This information is instead available for the

20Note that the capital stock measure is not quality-adjusted.
21dentifying which technologies matter most for automating tasks and replacing labor is of importance — a
challenge left for future work.



plants surveyed in the 1988 and 1993 versions of the SMT'. Table 2 shows the rate of diffusion across
plants based on these two surveys. While robots are relatively less common in U.S. manufacturing
during these survey years, many other technologies, such as numerically controlled/computer-
numerically controlled (NC/CNC) machines, computer-aided design, engineering and manufac-
turing, programmable controllers, computer networks, sensor-based inspection, and flexible manu-
facturing cells/systems, have relatively high diffusion rates. Given that the relative diffusion rates
of the technologies are highly similar in the 1988 and 1993 SMT, the variation in diffusion rates
across the technologies is likely similar for the 1991 SMT.

2.3 Measures of Technology Use and Investment

The specific intensive measures of technology used in this paper are based on four main check-
box-type questions, described in Table 3. The questions ask about current and future dependence
of operations on technology, as well as about past and future investment in technology. The
questions were asked for each of the four broad technology types, providing a rich characterization
of adoption and use of various technologies by the plant. For the purposes of this study, each
response was recoded into a numerical category, see Table 3 for more details.?

An important advantage of the 1991 SMT with respect to the 1988 and 1993 SMT is the
more accurate measurement of the contribution by advanced technology. The dependence of
operations on technology and the dollar-value of investment in technologies arguably better reflect
technology-dependence than an indicator of whether the plant has any specific technology, or how
many of the technologies it uses — measures available in the 1988 and 1993 SMT. For example,
while two plants may both have robots, a larger dollar value of investment in robots in the first
plant compared to the second better captures the fact that the first one relies more heavily on
robots and therefore automation may have a larger effect on the plant’s operations and workforce.
These considerations are important for the purposes of this paper because identification is based
on cross section variation in these indicators.

A caveat on measurement is that the responses are recorded as ordinal values. While the
ordinal scale may introduce noise, it allows an ordering of plants’ technology usage and investment
intensities across different technology types, implying that the cross section variation in these

measures can be used for identification.

22Tt is important to emphasize that although higher categories indicate a higher use or investment level, higher
categories do not correspond to a linear increase in responses.



2.4 Other Plant Characteristics

In addition to technology indicators, the 1991 wave of the SMT contains a variety of measures on
plant characteristics, including employment, value of shipments, age, export intensity, the presence
of a union contract for production workers, the average price of plant’s products, production for
military purposes, and government contracting/subcontracting.?® As in the case of the questions
related to technology, these measures are only available in categorical or ordinal form.

For TFP estimation, continuous measures of employment, capital stock, total value of ship-
ments, materials, and energy usage were obtained from the 1991 Annual Survey of Manufactures
(ASM) for most of the plants surveyed in the 1991 SMT. Since the SMT was conducted separately
from the 1991 ASM, its sampling frame is different from that of ASM and some SMT plants are
not in the 1991 ASM. The 1990 ASM and 1992 Census of Manufacturers (CMF) were used to
supplement some of the continuous variables.?* For productivity measurement, data on input
usage and prices are needed. Such data are not available for a large number of plants. This leaves
a smaller set of plants with data on inputs and output. A separate unbalanced panel of ASM
plants is also utilized in the estimation of the elasticity of substitution between production labor
and capital. This dataset uses plants in the ASM for the period 1987-1996 for industries that are
covered by SMT.

For the analysis of the relationship between the degree of automation and the evolution of labor
share and labor productivity, the plants in the 1991 SMT that survive and appear in the 1997 and
2002 CMF were identified using the U.S. Census Bureau’s Longitudinal Business Database (LBD).
The plants surviving till 1997 and 2002 are used to study the evolution of labor share within the

next 5 to 10 years as a function of technological sophistication as of 1991.2

3 Stylized Facts on Automation and Labor Share

In this section, the basic facts about the relationship between technology adoption and plant
characteristics are laid out, focusing on capital and labor usage. The degree of automation is

measured using a technology index based on information about four technology types, see Table

23Some of these measures (e.g. unionization, export intensity and production for military) provide rare oppor-
tunities to explore relatively less known properties of manufacturing plants. For instance, the responses about
the presence of a union contract can be used to assess the relationship between unionization and other plant
characteristics. For a use of the survey for this purpose, see Dinlersoz et al. (2017).

24If a plant was not found in 1991 ASM, 1992 CMF was searched for this plant. If found, the values of the
continuous variables reported in the 1992 CMF were used. If a plant was neither in 1991 ASM and 1992 CMF,
1990 ASM was used to attach values to the continuous variables for the plants that appeared in 1990 ASM.

25The unavailability of the type of data collected in 1991 SMT for other years prevents a full dynamic analysis
of the evolution of automation intensity at the plant level.



2.25 The index averages re-coded plant-level responses to four questions — listed in Table 3 — about
technology dependence and investment across these technologies. The index spans continuous
values between 0 and 5, each value representing an average of past, current, and planned future
technology investment and use intensity.?” An index value of zero indicates that the plant has
virtually no reliance on automation. Higher values indicate greater use of, and investment in,

automation.

3.1 Labor Share and Automation across Plants

The subjective assessments by plants in the 1991 SMT indicate that labor cost reduction is deemed
an important benefit from the use of advanced technologies related to automation, as shown in
Figure 3.® Labor cost reduction comes as the second most common benefit cited by plants
next to quality improvement, followed by increase in flexibility of plant’s production. While the
distribution of responses suggests that a major motivation for using automation is reduction of
labor costs, a quantitative assessment of labor cost relative to the plant’s revenues is not possible
based on the data collected in the survey alone. To that end, measures of labor share obtained
from ASM and CM are related to measures of the degree of automation.

Figure 4 plots non-parametric local polynomial smoothing estimates of labor’s share in a plant’s
total value of shipments, as a function of the technology index. Pointwise 95% confidence intervals
are shown as dotted lines in the figure. Three key observations can be made from Figure 4.

First, labor share is lower for more technologically advanced plants: it drops from 29% of
revenues to 24% (a decline of 17%) as the technology index increases. The decline is statistically
significant for much of the index range.?® Second, the decline in labor share is driven by the decline
in production labor share rather than non-production labor share. The former drops nearly by
half, from 17% to 9% (see Figure 4(b)) and this decline is statistically significant, whereas the
later actually increases slightly from 12% to 14% (see Figure 4(c)), though the increase is not
statistically significant. These two observations suggest that technologically advanced plants tend
to have much lower fraction of their revenues dedicated to compensating production labor, but a
slightly higher fraction to non-production labor.

Third, plants with higher levels of automation also tend to have a lower fraction of their

26There is also an additional question, not listed in Table 3, about the expected investment associated with
future plans on technology adoption/upgrade, i.e. expected cost of future acquisitions (Question 13 in the 1991
SMT Report Form). Incorporating this question to the technology index makes little difference in our results and
conlcusions.

27 Alternative measures are also considered, as discussed below.

28The responses in Figure 3 are to Question 10 in the survey: “What benefits have you derived from the use of
technologically advanced equipment or software in this plant?”. The response category ”Not Applicable” is omitted
in the figure.

29The confidence intervals get larger towards the high end of the technology spectrum owing to the relatively
small sample of plants in that region and the one-sided nature of the kernel smoothing near the end of the sample.
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workforce engaged in production (Figure 4(d)). At the lowest levels of the technology index, the
fraction of production workers in plant employment is about 70%. This fraction drops sharply to
nearly 50% at the highest levels of the index — a decline of almost 30%. Figure 5 provides additional
evidence on the relative input usage. The capital share in the value of shipments increases with
the technology index (Figure 5(a)). As a result, the ratio of capital share to labor share is also an
increasing function of the degree of automation in a plant as measured by the technology index
(Figure 5(b)). The same statement holds for the capital-labor ratio, plotted in Figure 5(c).?

Technology is also closely related to other measures of plant performance (Figures 6-8). Namely,
labor productivity increases with technology index, especially in the case of production labor
(Figure 6), a finding robust to alternative ways to measure labor productivity (Figure 7).3! In
addition, the average wage bill per worker increases for both types of labor as the technology index
increases (Figures 8).

The relationships between the technology index and plant-level outcomes are robust to other
controls such as plant size and age, unionization, or whether or not a plant exports. Tables 4-6
show the estimated coefficients of the technology index conditional on these controls.*? Tables
4-6 also feature, for robustness, an alternative technology index that only includes the average
investment indicator across the four technology groups based on survey question 2 in Table 3.
The results indicate that plants that rely more on, or invest more in, technology, tend to have
lower production labor share and exhibit higher production labor productivity and average wage.
A 1% increase in technology index is associated with a 0.04-0.08% decline in production labor
share, 0.12-0.14% increase in production labor productivity, and 0.08-0.09% increase in average
production worker wage. In contrast, the technology index does not seem to be related to non-
production labor share, while average wage and labor productivity of non-production workers both

increase with the technology index.?® These results confirm the bivariate relationships discussed

39The patterns in Figures 4 and 5 continue to hold if plant value added is used instead of revenues, when industry

effects are netted out, or when other plant characteristics are controlled for.

wl r\ 1
31Note that labor’s revenue share, LS, can be written as LS = — = w 7) = w x (LP)™!, where w is average

wage, [ is employment, 7 is revenue, and LP is revenue productivitgf of labor. Hence, labor share is inversely related
to labor productivity, and positively associated with average wage.

32These characteristics include five plant size (employment) categories (1-20 emp, 20-99 emp, 100-499 emp, 500-
999 emp, 1000+ emp), four age categories (0-5 yrs, 5-14 yrs, 15-29 yrs, 30+ yrs), a production worker unionization
indicator (1 if the plant has a union contract for production workers), export intensity indicator (1 if more than 50%
of the plant’s products are exported), an indicator of military production (1 if the plant is engaged in production to
military specs), a foreign-ownership indicator (1 if 10% or more of the voting stock or other equity righrs are foreign-
owned), an indicator of shipment to defense agencies (1 if the plant ships directly to DOD or Armed Services), an
indicator of shipment to primary contractors for defense agencies (1 if shipments are made to a primary defense
contractor), and 4-digit SIC industry fixed effects. All dependent variables are expressed in logarithms, and an
inverse hyperbolic sine transformation is used for the technology index. The transformation allows observations
with technology index value of zero to be kept in the analysis. Hence, the estimated coefficients can be interpreted
approximately as elasticities.

33Non-production worker category includes labor with various education and skill levels, and this composition
effect may be hiding the potentially divergent patterns for different worker types classified in the group. Census

11



earlier.

While not included in Tables 4-6, some of the plant-level controls are also significantly related
to production labor share.** For example, older, foreign-owned, and unionized plants have higher
production labor share, while larger plants and plants that export more than 50% of their products
have lower production labor share. The patterns in Table 4-6 are also robust, and even more
pronounced in many cases, when value added is used as an alternative to total value of shipments

in calculating labor share and labor productivity measures.

3.2 Change in Labor Share and Automation

The measures of automation are available for 1991 only, so a complete panel analysis that considers
changes in the degree of automation is not possible. Instead, the approach is to analyze post-1991
evolution of plants that likely depend on the degree of automation, and explore the 5- and 10-year
changes in key outcomes as a function of the technological sophistication of the plant as of 1991.
This approach may be informative about the dynamic relationship between automation and factor
usage because several automation-related technologies, such as computer aided manufacturing and
local area networks, are likely to remain in place over time.*”

On average, the data indicates that production labor share declines in surviving plants over
time. The change in production labor share over time, however, is not uniform across plants.
While many plants experience negative growth rates in production labor share, some experience

a positive one. To explore the connection between automation and change in labor share, the

following specification is estimated
AY; = b, + brl; + bpAE; + bx X; + &5, (1)

where AY; is the log difference in the labor share between 1991 and 1997, or between 1991 and
2002, AFE; is the log difference in total plant employment over the same horizon, and I; is the
technology index as of 1991. X; includes other plant-level controls and industry effects as in
Tables 4-6. AE; controls growth-related heterogeneity.?® Because AY; is observed only for plants

surviving till 1997 (or 2002), a Heckman two-step estimation is also implemented to account for

Bureau defines a non-production worker as a worker engaged in the following activities: factory supervision above
the working foreman level, sales, sales delivery, advertising, credit collection, installation and servicing of own
products, clerical and routine office functions, executive, purchasing, financing, legal, professional, and technical.

34The estimated coefficients of these variables are not released to reduce the amount of information disclosed
about the sample of plants studied.

35Tt would be possible to use the 1988 and 1993 surveys to analyze the effect of a change in the degree of
automation on the change in plant outcomes. However, such an approach has several drawbacks. First, there
is significant attrition between the 1988 and 1993 waves of the surveys. Second, the technology indices in these
surveys are extensive measures. Third, prior research with these two surveys indicate some recall bias.

36Growing plants that hire more employees are expected to experience a rise in labor share.
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the bias introduced due to this selection. The specification in (1) is also implemented using the
log difference in production labor productivity as the dependent variable.

The results in Tables 7 and 8 indicate that plants that were more automated in 1991 tend to
experience lower production labor share growth and higher production labor productivity growth
over the next 5 to 10 years. Specifically, 1% higher technology usage or investment in 1991
is associated with 0.07-0.08 percentage point lower labor share growth.?” The effect of higher
automation in 1991 on labor productivity growth is the opposite. A 1% higher technology index in
1991 is associated with 0.07-0.11 percentage point higher growth in production labor productivity.
In addition, employment growth has a negative association with labor productivity.*® Controlling
for survival bias using a Heckman correction confirms these conclusions: Tables A2 and A3 in
Appendix A.2 show qualitatively similar results. Conclusions are also stronger when value added
is used to measure production labor share and productivity.

Overall, the stylized facts indicate that automation is tied to labor usage and labor productivity
in a statistically and economically significant way, both across plants and over time. Models of
production that yield constant labor share across plants or over time, such as Cobb-Douglas
technology, cannot appropriately account for the facts documented. The systematic differences
across plants in factor usage and technology investment can be better captured by models where

plants choose and alter the degree of automation.

4 The Model

This section offers a model of plant-level production that can account for the stylized facts on
capital-labor substitution presented above. A key feature of the model is that a plant adjusts its
capital-labor ratio in response to changes in the relative price of these inputs. The other important
feature is that the nature of the relationship between the capital-labor ratio and relative price is

fully determined by the degree of substitutability between these inputs.

4.1 Technology

Plant ¢ generates output according to the production function

Qz’ ZQZLQ;MZ[?QE??’ [af/aKip + (1 o ai>2/oin}’Y/P7 (2)

37These results are conditional on overall employment growth: the estimates show that a 1 percentage point
increase in employment growth is associated with a 0.11-0.17 percentage point rise in the growth rate of production
labor share.

38A 1 percentage point increase in employment growth is associated with a 0.10-0.17 percentage points decline
in production labor productivity growth.
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where 6 denotes Hicks-neutral productivity, L,, is non-production labor, M and E are materials
and energy, K denotes capital, and L, is production labor. Freely variable inputs L,,, M, and E are
combined using a Cobb-Douglas aggregator with parameters 0 < f;, Vj.** Quasi-fixed inputs K
and L,, are aggregated using a CES form into a composite input, 7; = [a?/gKf—l—(l—ai)z/ngi]l/p.‘m
The parameter p € R determines the elasticity of substitution, o, between production labor and
capital — p and o are related as 0 = 1/(1 — p). «a; € (0,1) in T; is referred to as the technology
of the plant. It is a choice variable, the plant sets T; by adjusting «; in response to changes
in the relative price of K and L,. Allowing for o; to be endogenous is a deviation from most
of the earlier work because «; is generally assumed to be an exogenously given constant within
an industry, see, among many others, Lawrence (2015) and Raval (2017). In a fully specified
model, Hicks-neutrality implies that «; determines output only through its effect on the plant’s
composite input. In other words, the production function in (2) does not impose any restriction
on the relationship between productivity and other plant characteristics.*!

Standard functional forms are limiting cases of equation (2). For example, Cobb-Douglas
technology is obtained as lim,_,; T;. Leontief and linear technologies are given as lim,_,o,7T; and
limy_,100 T3, respectively.®? The specification in equation (2) is different from standard models
of capital embodied technical change. While a higher level of «; embodies more capital in the
composite input, this is the result of plants’ endogenous technology choice in response to price
changes, not of exogenous productivity shocks, as would be the case in a standard model of
capital or labor embodied change — see also Acemoglu and Restrepo (2018a,b) for an assessment
of modeling automation as exogenous capital or labor augmenting technological change, which
have implications on equilibrium labor share and wages that do not necessarily line up with the

accumulated evidence.

39The Cobb-Douglas assumption for this part of the production function is mainly a simplification, since the
main focus of this paper is on understanding the connection specifically between production labor and capital — in
particular, capital in the form of advanced technology. It is possible to extend the analysis by using nested CES
specifications that can allow for varying degrees of substitutability between both labor inputs and capital, as well
as energy and materials.

40The assumption of quasi fixity of these two inputs is justified if K and L, are subject to non-linearities (see
Caballero et al. (1997)) or non-convex adjustment costs (see Cooper and Haltiwanger (2006) and Bloom (2009)).

41Tf model (2) is not fully specified, a correlation between productivity and other plant characteristics may
emerge. For instance, if §; = 6(«;), the choice of a; directly affects productivity in addition to its effect through
the composite input. Such an assumption is appropriate if the adoption of labor-saving technologies results in more
flexibile production, improves coordination of production processes, or allows management to be more effective in
monitoring production. All these mechanisms would yield positive correlation between «; and ;.

42More general forms for T; can be specified using an additional parameter. For example, T; = [af/ ’K! +
(1 —a;)</ "in]l/ P, where 0 < (. However, without additional information, it is not possible to identify ¢ and p.
Equation (2) is nested in this specification with ¢ = 2, because this parametrization is both analytical tractable
and general enough, while also allows to identify p.
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4.2 The Plant’s Problem

Throughout this section, plants are assumed to be price takers in input markets — a standard
assumption in the empirical productivity literature. In the first part, price taking behavior is also

assumed for output markets.

4.2.1 Exogenous Output Prices

Plants produce a homogenous good with its price fixed and normalized to one. All factor prices
are allowed to vary across plants, as opposed to the typical assumption that they are constant.
The assumption of heterogenous input prices is justified if there are differences across plants in
terms of the quality of their inputs. One example would be the case in point, i.e. where plant-level
capital stocks differ in the extent to which they contain automation-related technologies.*® The
first-order conditions imply that the capital-to-production labor ratio, and the relative weight on

capital and production labor, can be written as**

2—0o
Ly, Wi
l1—0o
Q; Wpi
= . 4
I —a (Wm) ( )

These expressions highlight the key data generating mechanism of the model: both «; and the

capital-labor ratio are tied to relative input price variation and the nature of these relationships
is fully determined by o. Equations (3) and (4) together imply that Lﬁp and {2 are increasing
in the relative price of production labor, as long as o € (0,1). An increase in the relative price of
production labor induces the plant to substitute away from L, by increasing K. Solving equation
(4) for the weight of production labor in 7; yields 1 — o; = (1 + (wpi/wki)lfa)_l, implying that
1 — oy is decreasing in the relative price of production labor when ¢ € (0,1). An implication is
that, if the true data generating process lines up with a CES specification that implies capital-
production labor substitution, the estimates of o should be less than one.

Since shares of input expenditures are of primary interest, it is useful to describe their properties

using the first-order conditions. Combining equations (3)-(4) yields an expression for the share of

43in input prices. For example, amenities, agglomeration economies, and costs of mobility and adjustment may

imply persistent differences in the price of labor and capital.

44Cost minimization implies the following first-order conditions: w;j; X;; = A\*B3;Qi, wy: K; = )\*QﬁagKfT;’*l,
wpiLpi = N*Qiy(1 — a)%LgiTg_l, Kfaz=1 = (1 - a)%_ngi, where A* denotes the Lagrange multiplier and
w;; denote factor prices. These conditions imply that the cost function can be written as TC; = > y w;j Xy =

XQi (8 +7).
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production labor in the cost of T;

wpl- Lpi
Wi K+ Wpi L

That is, the optimal weight of L,; in T is also its share in the cost of 7;. Since the revenue share

of T; equals v, the revenue share of production and total labor can be written, respectively, as

wpini
—— =91 — o 6
251 a) ©)

i Lpi Wi Ly
Dpizpi T — By (1 — ). (7)

Qi

Equations (5), (6) and (7) indicate that labor share measures are decreasing in «;. The rate at

which they decrease is captured by their sensitivity to o;.*°

Bj
> Bty
2/0 p—1 N2/o7p—1

K7 4 (1—ay)¥/7 L,
i — pi
—1— X ¢;, where ¢; =
X8ty Y ! R Kl +(1-a;)2/7LE,

€ (0,1). One difference relative to the results for Cobb-Douglas technology is that imposing

The cost share of the jth variable input can be written as cs; = and the share of

T; in total costs is given by csg; + csp,, = < 1if
constant returns to scale (CRS) is not sufficient in order to identify factor elasticities. Although
variable input elasticities are identified by cost shares under CRS, the share of the composite
input, 73, in total costs underestimates the contribution of v to returns-to-scale, irrespective of
the value of returns-to-scale.

When returns-to-scale is a free parameter, the implications of profit maximization can be used
to recover factor elasticities. The first-order condition from profit maximization imply that factor

wji Xji

elasticities can be written as 3; = 5. and v = w’“ L4+ w’” 2t which show that under exogenous

prices and unknown returns-to-scale, the factor elast1c1tles of both freely variable inputs and the

composite input are identified by revenue shares of input expenditures.*”

4.2.2 Isoelastic Residual Demand

The previous section imposed price taking behavior in output market. An alternative to fixed
output prices is to postulate that the plant’s residual demand is isoelastic.*® Under this assump-

tion, the inverse residual demand function can be written as P, = P (Q/Q;)" " &, with 0 < k < 1,

45Tf v < 1, the rate of decline in (6)-(7) as «; increases is smaller in absolute value than the rate of decline in
(5). When v > 1 the relationship is reversed. When v = 1, all three shares decline at the same rate.

46The results under Cobb-Douglas carry over to variable input elasticities: under increasing (decreasing) returns
to scale, cost shares of variable input expenditures underestimate (overestimate) the factor elasticities.

47The correspondmg condition for variable input X; can be written as wj; = 5] X, pi these read

= wy;, and Ql v(1— al) inTl7 - = Wp;.
48Thls approach is commonly used in the literature. Recent examples include De Loecker (2011), Bartelsman
et al. (2013), Foster et al. (2016, 2017), and Haltiwanger and Wolf (2018).
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where P and () denote aggregate variables and &; is an idiosyncratic demand shifter. The results
of cost minimization are robust to alternative assumptions about demand. The conclusions of
profit maximization are different because under isoelastic demand marginal revenue products are
smaller than marginal products. To see this formally, let R; denote plant-level revenues P;@Q);, and

write the first order conditions for the jth variable input and the quasi-fixed inputs as

R; J
Wi K wpini
— 8
R, R K, (8)

where the second line combines the conditions for K and L,. The implications of these conditions
for the relationship between wy,;/wy;, K;/Ly and «;/(1 — o) are the same as in equations (3)-(4).
Intuitively, since demand affects all inputs, their relative allocations do not change in the wake
of a demand shock. An important difference relative to Section 4.2.1 is that factor elasticities
depend on both the revenue share of input expenditures and the inverse of the demand parameter
k. Therefore, under x € (0,1) revenue shares underestimate variable factor elasticities and ~.%
In principle, information on output prices could be used control for output price variation during
estimation, which in turn would allow the identification of factor elasticities. However, output
prices in SMT are recorded as a categorical variable.”® However, preliminary analysis indicates
that this price information has no additional explanatory power conditional on continuous variables

such as capital and labor.

5 Semi-parametric Estimation

The estimation strategy follows a structural approach. First, ¢ is estimated by transforming
(3) into an estimable equation where plant-level variation in production labor is projected onto
cross-sectional differences in plant-level production wages and capital. Under the assumptions of
the model, this projection is informative about the substitution patterns between K and L and
therefore can be used to identify 0. The other parameters of production function (2) are estimated
conditional on the estimate o, using a modified version of the approach described in Haltiwanger

and Wolf (2018). The remaining coefficients are determined conditional on these parameters.

R
50The categorical price variable measures average price for the products of a plant and is available in the 1988
and 1992 SMT only. Therefore this information is not available for all plants in the 1991 SMT.

49Solving the first order conditions for the elasticities yields 8; = m_le):j"’, and v = "1 (% + w”?f’”)
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5.1 Elasticity of Substitution

Log-linearizing equation (3) yields
li = (0 —2)Inwy — (6 —2) Inwy; + k; + &,

where ¢; is an i.¢.d. error term. Given data on [,;, k;, and their prices, this equation can be

estimated by running the regression
lPi = (51 In Wy + 52 In Wi + 53]1’1 + U, (9)

The wage rate for production labor, w,,, is obtained by dividing production labor costs by produc-
tion worker hours. This approach implies that OLS estimates of §; are affected by division-bias,
which is addressed using geographic variation in wages, where w,; is instrumented using a state-
and county-specific average manufacturing wage indicator, calculated using plant-level informa-
tion. This approach is similar to the method used by Raval (2017).

The rental price of capital wy; is not observed in the data. Capital costs are calculated by
combining industry-specific rental prices and plant-level capital measures.’® This approach results
in measures of wy; K; and K, but not wy;, implying that ds is not identified. Under the assumption
that wy; is plant-specific, its effect is accounted for by a plant-level fixed effect, in which case §; and
d3 are identified in the first-differenced version of (9). This approach is justified when plant-level

capital prices are persistent, for instance when they follow a random walk.

5.2 Factor Elasticities

The estimation strategy for factor elasticities builds on earlier results in the empirical productivity
literature, but also deviates from standard approaches in order to better make use of the features
of the SMT. The 1991 SMT provides variables that record categorical responses on how much the
plant invested in four technology types in the previous three years — see question 2 in Table 3.
Although the variables are categorical, they provide direct information on cross-plant differences
in technology investment. The responses are combined into a plant-level indicator of technology
investment, which is then used as a proxy to control for unobserved productivity differences
during estimation. This proxy is a distinguishing feature relative to the majority of earlier studies
that mostly rely on general investment to control for unobserved productivity differences during

estimation.??

51See Foster et al. (2016) about the properties of this data.
52The idea of accounting for unobserved productivity differences during estimation by using firm-level proxies is
discussed in Olley and Pakes (1996) and Levinsohn and Petrin (2003).

18



In addition to the unique proxy, the estimation strategy deviates from the standard proxy-based
approaches in two other respects. First, it abstracts from selection because the SMT has limited
information on investment history. Second, it follows the methodology described in Haltiwanger
and Wolf (2018) to estimate the elasticities of freely variable inputs. Given downward-sloping
demand, the revenue shares of variable input expenditures depend only on the corresponding
factor elasticity and the demand parameter, implying that revenue shares identify factor elasticities
without projecting revenue variation on proxies, state variables, or variable inputs.?® This feature
is useful because Gandhi et al. (2016) show that the identification of intermediate input elasticities
is problematic when using intermediate inputs as a proxy. Given estimates of variable input
elasticities, Haltiwanger and Wolf (2018) propose to net out the contribution of variable input
expenditures to revenue variation, and use this net variation to estimate the remaining coefficients.
The main difference relative to Haltiwanger and Wolf (2018) is how the net variation is used to
determine the remaining coefficients, since their approach considers Cobb-Douglas technology.

Below is an outline of the estimation approach:

1. Obtain IV estimates of o based on (9): & = 0y + 2.

2. Compute wj; X;;/R;, and estimate input elasticities using average revenue share of the input,
B\j = 1/N ), w;;X;i/R;. Averaging mitigates the effects of measurement error, and is often

used in empirical productivity literature.

3. Net out the contribution of variable input costs from revenue to obtain g, =r—>y, ; B\jiwﬁX ji-

Wi K
Wi Ki+wpi Lpi

and p = %, calculate the contribution of the composite

4. Conditional on a; =
input

In a?/aKiﬁjL (1-— ai)Q/aLf:i] : (10)

5. Following Haltiwanger and Wolf (2018), determine the joint contribution of state variables

and the proxy by estimating

where ¢(Z;, p) denotes a polynomial of degree p in vector Z;, which contains state variables
and the proxy. Choosing p = 2 is standard. State variables include, but are not limited to,
fi and other plant characteristics, such as plant age. If the only state variable is ﬁ and if

_ o~ _ /!
technology investment can be subsumed into a single indicator ¢; then Z; = (Ti, ti> e

53See Section 4.2.2 for more details.

54Treating T; as a state variable is justified by the considerations that lead to treating K; as a state variable
in the vast majority of the empirical productivity literature. Differences in establishments’ productivity histories
are controlled for by T; if the only unobservable is productivity and if investment in technology is an increasing
function of productivity.
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6. Given fitted values QASZ-t from equation (11), use nonlinear least squares to estimate
By = orTi + I ((bitfl - 6Tﬂt71> + Vit (12)

where h is a second-order polynomial in its argument. Under the assumptions underlying

equations (2) and (10), &7, the coefficient of 7}, in regression (12) identifies .

The SMT asks about the plant’s total investment in technologically advanced equipment and
software for the previous three years for each of the four technology groups — see Table 3. The
responses of each plant in 1991 are averaged over the four technology groups (;), to determine
51- in (11), which is the joint contribution by ﬁ-, t; and plant age. Under the assumptions of the
model, this value can be used to control for unobserved productivity differences across plants when
estimating dr using data from 1992 in (12). If the plant-level productivity process is Markovian
—a standard assumption in the empirical productivity literature— then 7 is consistently estimated
in regression (12). The standard error of ST is estimated using a bootstrap approach, because S\T7S

distribution is non-standard.

6 Results

6.1 Elasticity of Substitution

The estimates of o 